
IP-Based Actions

IP-based actions are similar to BIND 9’s RPZ-IP triggers and corresponding actions. They are
similar to the existing local-zone or other tag-based actions, but defined for particular
IP-netblocks. If the IP(v6/v4) address of an AAAA or A in the answer section matches one of
the specified netblocks, the corresponding action will apply to the response. For example, it
may change the address to a different one (redirect) or make the entire resolution result in
NXDOMAIN.

This note describes details of proposed implementation of IP-based actions in Unbound.

Configuration Syntax
IP-based actions require a new (optional) Unbound module placed above iterator (see the
implementation note below). So the module-config option must be specified explicitly:

module-config: "respip iterator"
If DNSSEC-validation is supposed to be enabled, it should be:

module-config: "respip validator iterator"

We also introduce three new configuration options: response-ip , response-ip-data ,
response-ip-tag . These options are part of the server: clause.

response-ip: <IP-netblock> <action>

If the IP address in an AAAA or A RR in the answer section of a response matches the
specified IP-netblock, the specified action will apply. <action> has generally the same
semantics as that for access-control-tag-action , but there are some exceptions
(see below).

response-ip-data: <IP-netblock> <”resource record string”>

This specifies the action data for response-ip with action being redirect . “resource
record string” is similar to that of access-control-tag-action , but it must be of
either AAAA, A, or CNAME. If the IP-netblock is an IPv6/IPv4 prefix, the record must be
AAAA/A, respectively unless it’s CNAME (which can be used for both versions of IP
netblocks). If it’s CNAME, there must not be more than one response-ip-data for
the same IP-netblock. Also, CNAME and other types of records must not coexist for the
same IP-netblock. The textual domain name for the CNAME does not have to be
explicitly terminated with a dot (.); the root name is assumed to be the origin for the
name.

response-ip-tag: <IP-netblock> <”list of tags”>

Assign tags to response IP-netblocks. If the IP address in an AAAA or A RR in the
answer section of a response matches the specified IP-netblock, the specified tags are
assigned to the IP address. Then, if an access-control-tag is defined for the client
and it includes one of the tags for the response IP, the corresponding
access-control-tag-action will apply. Tag matching rule is the same as that for
access-control-tag and local-zones . Unlike l ocal-zone-tag ,
response-ip-tag can be defined for an IP-netblock even if no response-ip is
defined for that netblock.

response-ip and response-ip-data can also be specified for a view, just like
local-zone and local-data .

If multiple response-ip-tag options are specified for the same IP-netblock (in different lines),
all but the one that appears first will be ignored (following the similar case for
access-control-tag). Even if it’s not rejected as a configuration error, it’s quite unlikely
that the result is the intended behavior and would be meaningless in practice.

The response-ip-xxx options require the respip module; if any of these options are
specified but the respip module isn’t enabled, unbound will refuse to (re)load the
configuration. In fact, some part of these options (i.e., modifying cached answers) would work
without the respip module, but such an incomplete behavior would be rather confusing or
even harmful. It should be better to explicitly reject such configurations as invalid.

Exceptions on response-ip Actions
Actions specified for response-ip are different from those for local-zone in that in case of the
former there is no point of such condition as “the query matches it but there is no local data”.
Because of this difference, the semantics of response-ip actions are modified or simplified as
follows:

● static , refuse , transparent , typetransparent , and nodefault are invalid
for response-ip . If any of these is specified the configuration will be rejected.

● deny is non-conditional, i.e., it always results in dropping the corresponding query. The
resolution result before applying the deny action is still cached and can be used for other
queries.

On the other hand, actions specified in an access-control-tag-action that has a
matching tag with response-ip-tag can be those that are “invalid” for response-ip listed
above, since access-control-tag-action s can be shared with local zones. For these
actions, if they behave differently depending on whether local data exists or not in case of local
zones, the behavior for response-ip-tags is largely compatible with that. However, the case of
no corresponding response-ip-data will generally result in NOERROR/NODATA instead of
NXDOMAIN, since the response-ip data are inherently type specific, and non-existence of data
doesn’t indicate anything about the existence or non-existence of the qname itself. For example,
if the matching tag action is static but there is no data for the corresponding response-ip

configuration, then the result will be NOERROR/NODATA. The only case where NXDOMAIN is
returned is when an always_nxdomain action applies.

Notes on Detailed Behavior

No AA Bit
If the original answer is tweaked due to a response-ip action, the final response sent to the
client will never have the AA (authoritative answer) bit on in the header section. This is different
from some cases of local-zone and access-control-tag actions (faked NXDOMAIN and
local/redirect data), where the final response is considered “authoritative” and has the AA bit on.
This behavior is consistent with BIND 9 RPZ (and in that case it’s not specific to RPZ-IP
triggers).

Answer Records Only
IP-based actions apply only to records in the answer section. Even if the IP address of an
AAAA or A record in the additional (or, unlikely in practice, authority) section matches an
IP-netblock of some response-ip options, these records (or the response itself) won’t be
modified.

Multi-RR Case
If an AAAA or A RRset in the answer section of a query contains multiple RRs and one or more
of the addresses are subject to response-ip processing, the action for the first matching address
in the answer message will be exclusively used. For example, if an answer AAAA RRset
contains the following IPv6 address in this order:

2001:db8::1
2001:db8::2
2001:db8::3

and the following IP-based actions are configured:
response-ip: 2001:db8::1/128 always_nxdomain
response-ip: 2001:db8::3/128 redirect
response-ip-data: 2001:db8::3/128 AAAA 2001:db8::bad

then the first matching action (always_nxdomain) will apply and the response will be converted
to NXDOMAIN (with no answer records). Likewise, if there are multiple matching redirect
actions for different IP-netblocks of the same answer RRset, only the first matching redirect data
will be used, and the resulting response will contain only one address (which is the matching
redirect data). Since it appears that Unbound caches an RRset in the order it receives from the
upstream server, the same action will be applied to subsequent responses to the same query
when they are directly answered from the cache.

This behavior largely follows the behavior of BIND 9’s RPZ-IP triggers. Note, however, that the
order of the answer RRs from remote servers is not always predictable, so it is also

unpredictable which response-ip action is used when there are multiple candidates. This is
different from BIND 9 RPZ-IP, where the triggers are applied to sorted RRs by default and the
matching rule is generally predictable for the same RRset.

CNAME Chasing
If a CNAME is specified as the action data for an IP-based action, Unbound will automatically
chase the CNAME target until it gets the final answer (whether positive or negative, or some
other error), and return the complete CNAME chain to the end client. For example, for the
above original AAAA answer RRset, if we define a redirect response-ip action as follows:

response-ip: 2001:db8::1/128 redirect
response-ip-data: 2001:db8::1/128 CNAME target.example.

then Unbound will resolve AAAA for target.example. (or retrieve it from the cache), and include
the result in the final answer after the specified CNAME. So an example final answer is:

<original qname> CNAME target.example.
target.example. AAAA 2001:db8::ffff

Unlike “CNAME-based redirect” for local-zone actions, this CNAME chasing will take place even
if the redirect data is used for an access-control-tag-action that is not redirect but can use local
data (e.g. static). For example, in addition to the above configuration, if there’s a following tag
setup:

access-control-tag-action: 192.0.2.1/32 "mytag" static
response-ip-tag: 2001:db8::1/128 "mytag"

then, if the client at 192.0.2.1 sends the same query, this static tag will refer to the redirect data
for the corresponding response-ip-data, and its CNAME target will be chased (in retrospect, this
would have been more intuitive for the local zone case, too).

Even if the CNAME target RRset has a valid RRSIG, the RRSIG won’t be included in the final
response to the client, nor the AD bit will be set in the response, regardless of whether or not
the original query sets the DO or CD bit (see also “DNSSEC implications” below). This behavior
is consistent with BIND 9.

Type-ANY query suppresses this chasing. For instance, in the above example configuration if
the query type is ANY, the answer will only contain the CNAME RR. This behavior is consistent
with BIND 9.

Note: Chasing CNAME targets for an IP-based action may be especially expensive in terms of
performance (see implementation notes below). It’s probably advisable to avoid this
configuration whenever possible.

No Recursive Application
This proposed implementation does not try to apply IP-based actions “recursively”; that is, it
does not apply an IP-based action to the IP address specified as a result of data of a redirect

response-ip action. For example, assume we apply a redirect action for 2001:db8::3/128
used in the previous example and rewrite it to 2001:db8::bad . Then, even if there is another
IP-based action which 2001:db8::bad matches, that action won’t apply. (This is the same as
BIND 9’s RPZ-IP.)

The same restriction applies to the target address of a CNAME when the CNAME is the redirect
data of an IP-based action. For example, in the example of the CNAME chain shown above:

<original qname> CNAME target.example.
target.example. AAAA 2001:db8::ffff

even if there is another IP-based action which 2001:db8::ffff matches, that action won’t
apply. In this case, only the CNAME will be returned to the client in order to avoid including an
IP address in the answer (in this example, 2001:db8::ffff) that would otherwise be subject
to an IP-based action. It will also help avoid having a weird corner cases like a CNAME loop
(e.g., consider the case where 2001:db8::ffff is redirect to <original qname> again).
Note that a sophisticated client (such as a local caching server using this Unbound as a
“forwarder”) could re-query for the CNAME target when it gets the incomplete CNAME chain. In
this case the intended IP-based action will apply and that client will get an answer that the
administrator of this action would probably envision. For traditional stub resolvers such an
incomplete CNAME chain effectively means resolution failure. This is not ideal, but it would be
acceptable in practice as in most cases the primary intent of such an action would be to avoid
returning a specific IP address.

In any case, such a situation is considered a kind of configuration error, and Unbound leaves an
informational level of log message when it detects the situation:

CNAME target of redirect response-ip action would be subject to
response-ip action, too; stripped

This is also consistent with BIND 9 RPZ, which doesn’t apply RPZ rules to CNAME targets if the
CNAME comes from an RPZ.

Similar to the above cases, even if there is a local-zone action to which target.example
would be subject, it won’t apply. In this case the above AAAA RR will be included in the answer
to the client (it’s no different from how a redirected CNAME target in local-zone or tag-based
actions works in general).

This is different from BIND 9 RPZ, which never applies RPZ rules more than once. In this
implementation we defer from it to keep the implementation simpler, but we may want to revisit it
(this is also different from what’s written in draft-vixie-dns-rpz).

No Override for Other Local Data
Similar to the previous subsection, IP-based actions will not apply to the result of other
local-data or tag-based actions. For example, if we have the following configuration:

local-zone: example.com. redirect
local-data: “example.com. IN A 192.0.2.1”
response-ip: 192.0.2.0/24 always_nxdomain

then a query for example.com/A will be answered from the local-zone with the A RDATA of
192.0.2.1. Even if it would match the IP-netblock of response-ip , its action won’t apply to this
answer. This is consistent with BIND 9 RPZ.

Authority and Additional Sections
If an AAAA or A RR of the answer section of a response is modified due to an IP-based action,
the authority and additional sections of the resulting final response to the client will be cleared
(an EDNS OPT RR may still be added to the additional section). This is the case regardless of
the action type, even if it’s redirect or nxdomain variants. This is different from BIND 9
RPZ: it adds an SOA of the corresponding RPZ to the authority section for positive answers and
to the additional section for NXDOMAIN.

DNSSEC Implications
If an original response is modified due to an IP-based action, the resulting final response will
never have the AD bit on even if the original response was DNSSEC-validated. Any RRSIG
RRsets for the modified RRset will be removed from the answer section; however, if the original
response is a CNAME chain and some of the CNAMEs have RRSIGs, these RRSIG will be kept
in the final response (note that CNAMEs can never be subject to an IP-based action). This
behavior is compatible with BIND 9 RPZ.

Multi-Level Netblock Matching
We will (eventually) try to implement multi-level matching: if the best (longest) matching IP-prefix
does not have a matching tag for a client but a less-specific matching IP-netblock has a
matching tag, the action for the less-specific IP-netblock should apply. For example, if we have
the following two response-ip-tag configurations:

response-ip-tag: 192.0.2.128/28 "tag1 tag2"
response-ip-tag: 192.0.2.255/32 "tag3"

and if an A RR in the answer section has address 192.0.2.255 but tags for the client include
"tag1" but not "tag3", then the action for 192.0.2.128/28 should apply even if the best
matching netblock is 192.0.2.255/32 .

This ideal behavior is consistent with how tags for local-zones match. But this may need
non-trivial extensions to existing Unbound utilities, while such a multi-level setup is supposed to
be quite rare. So we may skip this behavior and always consider the best matching netblock (if
there is no matching tag, treat it as there is no matching netblock) in the initial implementation.

This is a TODO item as of this writing (as of February 10, 2017, this “ideal behavior” is not
implemented).

Type ANY Query
The primarily intended usage of IP-based actions is to apply them to type AAAA or A queries.
But it should also work for type ANY queries if the answer contains an AAAA or A record. This
is consistent with BIND 9 RPZ. In this case, all RRs of the original answer will be removed
except the one that triggered the IP-based action, for which it may be replaced (in case of a
redirect action) or it may also be removed (in all other types of actions including nxdomain
variants). This behavior is also consistent with BIND 9 RPZ.

Inform Log
If an inform or inform_deny IP-based action applies, a message will be logged with
information about the client that triggers the action. This is similar to log messages for inform
and inform_deny actions of local zones and their tag actions, but contains the matched
netblock instead of the domain name. An example log message is as follows:

info: 192.0.2.0/24 inform 2001:db8::a@5005 inf.example.com. A
IN

Overview of Implementation Design
Unlike other local-zone and tag-based actions, whether to apply an IP-based action cannot be
determined completely locally since it depends on the result of normal resolution. Also, since
the “CNAME chasing” behavior will require additional sub-queries, we cannot just tweak the
answer immediately before sending it to the client.

So we chose to implement the main functionality as a separate Unbound module named
respip (meaning “response IP”). It’s intended to be placed on top of the module stack (usually
immediately above the iterator module) and works as a filter for resolution results. Its
operate() function first passes the state to the lower module to resolve the original query.
When it’s done, it checks the answer section for AAAA or A records that may require IP-based
action processing. If some action needs to be applied, the module modifies the answer
accordingly (changing the IP address to a different one, converting the whole answer to
NXDOMAIN, etc.) and usually completes the module. The exception is the case where a
redirect to CNAME, in which case a sub-query is triggered to resolve the CNAME target, and the
original query state is held until it completes. On completion of the sub-query, the module’s
inform_super() function is called. It appends the resolved target records to the (already
tweaked) answer section of the original answer. Finally, the control comes back to the
operate() function, which simply completes the module processing.

The respip module will need to get access to part of acl_addr of the client that triggers a
particular query so that it can apply tag-based or per-view actions. So we’ll need to extend the
existing mesh_new_client() function so it takes the sub part of acl_addr and stores it in

the module_qstate . A new structure named respip_client_info is introduced for this
purpose (we didn’t like to expose acl_addr outside of unbound daemon, as it was deemed to
be module-boundary violation; otherwise we could simply use acl_addr itself instead of the
new structure). The mesh state comparison function will also have to be updated so that it takes
into account respip_client_info. Note that this can lead to more external queries for
the same qname and qtype if many ACL entries are defined for many different clients.

We also need to update the code that answers queries directly from cache (mainly in
daemon/worker.c) in case the answer to the original query is already cached and it has to be
modified by an IP-based action. In terms of observable behavior this could be avoided if we
always call the module stack including the respip module; however, it’s quite likely to be
unacceptable in terms of performance since it would require additional function calls and many
more data copies. (We won’t be able to use the wire-format cached data directly as the
resolution needs to go to the generic iterator module.)

We implementation updates the answer_from_cache() function for this purpose. Before
encoding the answer RRset, it now checks if an IP-based action should apply, and if so, tweaks
the answer accordingly. Again, the tricky case is a redirect to CNAME. In this case, it first
needs to see if the CNAME target is cached, but to do so it will first make a local copy of the
original RRsets, tweaks the answer, and releases acquired locks (it needs to release the lock for
the additional cache lookup, and so it needs to make a copy of the cache data as the reference
to the cache is not protected by the cache). Also, if the CNAME target is not cached, it will
behave as if the original cache lookup failed to trigger the usual resolution (and processing by
the respip module). These are complicated and inefficient, but seem to be unavoidable costs.

